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ABSTRACT

This thesis describes the development of a new method

for controlling the error in model following control systems.

The treatment is for first order, linear or nonlinear,

time varying or time invariant systems with additive

(linear) control. The errors controlled are assumed to

have arisen from external disturbances or from differences

in the initial conditions of the plant and the model.

The theory introduced is called constant error model

following control. This paper describes the theory as an

outgrowth of attempts to control a plant by feedback of an

error between the plant and model with the error specified

to be constant. From this, it is shown that a model may be

followed with arbitrary error. The central result is

that, given some error, one can find another model (control

model) which, if followed with this arbitrary error, will

guide the plant state trajectory back to that of the model.
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I. INTRODUCTION

The theories presented in this thesis were developed

in the course of researching control techniques for use in

aircraft departure prevention. The aim was to apply model

following control methods to the nonlinear, time varying

and coupled dynamic equations of motion of an aircraft at

critical combinations of angle of attack and angular rates.

When it was seen that a new development in model following

control had evolved from the research, it became the sole

subject of the thesis.

Model following control is concerned with techniques

which cause a physical plant to behave as much like a model

as possible. Motyka [Ref. 1] accomplishes this by solving

the plant state equations for their controls and then

substituting expressions for the model states and state

rates into these equations. That is, assuming that the

plant is defined by the linear, small perturbation constant

coefficient differential equation:

p =f Xp + g u (1)

where xp is the state of the plant

U p is the control

8



and that a model is given by the corresponding differential

equation:

m 2 x +g 2 'm (2)

It is desired that x m x xP and A = p

The plant control which achieves this can be determined by

substituting the desired relationships into the plant

equation:

i= f 1 X + g1 u p (3)

And solving for u~ . The result is an expression for the

plant inputs which make the plant state equal to that of

the model.

Problems with this method arise when equations (1)

and (2) are vector equations with fewer controls than states

to be controlled. Also, if equation (1), which is a

mathematical description of a real, physical plant, fails

to describe that plant accurately, errors may be introduced

into the response of the system. Finally, errors will

occur if the plant and the model do not have the same

initial conditions, or equivalently, in the presence of

external disturbances.

The first two of these three problems are treated by

Moytka [Ref. 1] and Rynaski [Refs. 2 and 3]. They are

beyond the scope of this paper. The theories presented

9



herein apply specifically to the problem of reducing the

system error in the third case. The method, called constant

error model following control, is developed and demonstrated.

for nonlinear, time varying, first order, single input-

single output systems with additive (linear) control.

10
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II. PROBLEM DESCRIPTION

For the purposes of this discussion, it is assumed

that a plant (physical process) is given, and that it is

completely described by a first order differential equation

with additive control of the form

i p = f 1 (x p , t) + g, u (i

where x is the state of the plant

t is the variable time

U p is the control input to the plant

f 1 is (in general) time varying and nonlinear in x

gl is constant

It is desired that the response of the plant be modified in

some way. This modified response is completely described

by the mathematical model

Xm = f2 (Xm , t) + g 2 us (2)

where x is the state of the model which has the desired

response

u s is the control input to the system which incor-

porates the model and the plant, and

fz is (in general) time varying and nonlinear in

Xm , and f2 fl

92 is constant, g2  gl

ii1
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III. SYSTEM DESCRIPTION

A parallel model following system is chosen:

FIGURE i. PARALLEL MODEL FOLLOWING CONTROL SYSTEM

where e is the magnitude of the system error:

Xm p
e =Ix M-Xp I

K is the adaptive gain applied to e to generate
a c

U K

UK is the (additive) modification to the system

control, u5

In this system, the steady-state error (ess) can never be

zero unless the plant and model have identical responses

to the same input, since

e =ss 0 implies that uK = 0 implies that up U s

and

e = 0 implies that Xmss = pss

12



Since this condition serves no useful purpose unless the

parameters of the plant or model are adjustable, we intro- 4

duce the idea of a constant (non-zero) error.

13
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IV. CONSTANT ERROR MODEL FOLLOWING CONTRCL

A. CONSTANT ERROR

Without changing the system, the error (e) is specified

to be fixed at some arbitrary value (e):

FIGURE 2. CONSTANT ERROR MODEL FOLLOWING CONTROL SYSTEM

We wish to determine the gain, K* , which will insure that

this condition, once established, will be maintained as

shown in Figure 3.

FIGURE 3. PLANT AND MODEL STATE TRAJECTORIES

The state trajectory of the plant follows that of the model

with constant difference e

14
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Wie have defined

e Xm xp

so that E A IX - x = constant,

where x * is the plant output for e c Similarly,
p

denote the value of K which maintains the error constant

Iat e = E as K* and the resulting control as u*

We now have

C x m - J = (X m - x *) sgn (x m x xP*

X m sgn (x - x *) E

soxp sgn (x m x p

orx *=x - sgn (x -x (5)
or in i p

and C= 0 (x~ - x p*) sgn (x~ - x

da (sgn (x~ x )]=0 since (xm x *) is assumed(t . m p p

constant)

so *

is



The esult is that, if the plant state is exactly +

from the model state, we may express S * and x * asP P

functions of k , x and + E The values of k , x
m m -

and c are known for any time and system control because

they have been specified.

Now note from the system description (Figure 2) that

Up u K*

UK U * U (7)

and uK*' Ka * c (8)

Equations (1) and (2) may be solved for u * and u 1

* p-(f 1 (x * t)
u * 9P (9)

m- f2 (Xm t)

u 9 (10)

By substituting equations (5) and (6) into equation (9):

xk f, [(x - e sgn (x - x *)) t]u(X 1 mm P ' (11)
P 91

1 If U and us  are not additive controls as assume

p
and if the state equations may be solved for u and us
the results which follow are still valid. P

16
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Here we define

(Xmt ) f [(Xm - sgn x p ,

(12)

--fl (Xp* , t)

so* =gl (13)

From equations (7), (8), (10) and (13):

K* E = u* = Up Us

" - f* (Xm C t) - km f 2 (xm t)K* m =(14)

-Zm fl* gX '(x t) 'z f2 (Xm t (K* E -1e9 (is)

Equation (15) gives us the gain which will insure that,

if x = x m+ initially (Figure 4), the proper control

will be applied to maintain it there if the system is

undisturbed. It is expressed solely in terms of the model

state and state rate, the specified error, and the func-

tional relationships which define the plant and model

responses.

17
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FIGURE 4. PLANT AND MODEL STATE TRAJECTORIES

The use of K* gain is illustrated in the following

example:

Example 1: Linear, first order, time invariant model and

plant.

* a x + u
p p p

ACm b xm us

we have * = a x *+ U*
p p p

18



then u p k* - a x

p p.

K a P :

(k- a x *) -k M b x)M

From equations (5) and (6):

A* km - afx M - csgn (x m x p lk m + bx m
ac

(b - a) x + a E sgn (x -x

or K*= -m Em p- (16)

The system is as shown in Figure 5.

FIGURE S. CONTROL SCHEMATIC FOR EXAMPLE 1

19



The system was simulated on the IBM 3033 using the

Continuous System modeling Program (CSNP). The following

values were used:

a = + 0.5 (unstable impulse response)

b = - 1.0

E= 0.05 -2

X (0) 0

x p(0) =0.1

XRDT (PL ANTJ= 0. 5xX(P1 RNT)+U[P ANT)

IM C3

* .00 0. 50 L.00 1'.30 2.0 0 Do L 2.0 50 LE .0
T IME

FIGURE Sa. SIMULATION RESULTS FOR EXAMPLE 1

2 2This value of e was chosen so that the error
following could be shown graphically. The system performs
similarly for any value of e > 0

20



The input (u s ) was a unit step at t = 0 . A time

history of the system response for the first five s'econds is

shown in Figure 5a.

B. STABILITY OF THE SYSTEM USING K*e CONTROL

The question to be answered is: Will the gain K*

satisfactorily control the plant if e # c ?

We require that, in response to an error such that

e # e , the system tend toward e = e That is, the state

of the plant, x , should tend toward x + c (static

stability).

)e )'(p*

/
XP X-A>)(P

t

FIGURE 6. PLANT TRAJECTORIES FOR DECREASING THE ERROR

21
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If e > c , we require @ < 0

-( m :p ) sgn (xm - Xp) < 0 if e > E (17)

(Again, the Signum function has no derivative since the

plant state trajectory does not cross that of the model.)

We have : * = Xm (6) so,
p m

(k*p*) sgn(x Xp < 0 if e > E (18)-( p 'p) (m p

The two cases are x > x and x < xIn p m p

x> X p > :k* < i p
Xm p p

for L < (19)

X x >:m < p = p > p

These two cases are shown in Figure 6.

From equation (1):

k fl (xp , t) + g K* e

(20)

p* fl (x p t) + 1 K*

In determining whether k < k or t * > i we
p p p p

know e > e , and we can examine fl (x, t) to see if

pj
22



it increases or decreases with x . But the sign and

magnitude of K* will be determined by the model being

followed (equation (15)).

From equation (20) we have

f = (X , t) f t)] g, K* (e E) (21)

From equation (19), with e > e

First Case: x > x > X >
m p p p

[f( , *t) f (x t)] + g, K* (e )[l(p t fl(p,

or [fl (X , t) f (Xp t)] > g, K* (e - ) (22a)

Likewise,

Second Case: X < x =>
m p

[l( ) f1(Xp t)] < K* (e e) (22b)

For any given xp , x , E and g, , all the quantities

in equations (22a) and (22b) except K* are determined.

Since we wish our descriptions of the plant and the model

to be arbitrary, we cannot assure that equations (22a) and

(22b) will hold for all cases.

23



This is illustrated by Example 1, where

S= a x + u

m =b xm +u S

Using equations (22a) and (22b):

xm > x requiresm p

a x p a x p* >- K* (e -)

a (xp- x *) > - K* (e e)

For x > x (x - x *) = (e - -)

since (e - e) > 0 , we require

- a > - K* or a < K*

Similarly, for x < x we require

a < -K*

Thus, if a < 0 , we require Jal < IK*I , or

(b - a) xm + a e sgn (xm - X Pjai < 1 -- I

using equation (15). This places an unacceptable restric-

tion on the choice of model and . If a > 0 , one or

the other of the inequalities is not satisfied.

24
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Using the values given in Example 1, the value of K*

at t = 1.5 seconds was found (from the simulation) to be

-12.2' . Here, a = 0.5 , a is not less than KX and

we can expect divergence if x~ > x0 M. p
negative step disturbance of magnitude 0.3 was super-

imposed on x p at t =1.5 seconds in the simulation. The

resulting divergence is shown in Figure 7.

XDNTCPLPT)= 0.5xX ( PNT)+U (PL PNT)* *XfT(M OEL)=1. NX f~VDEL] *U ST 5TE M}
PLHNTL .C.=0.Q5. M20E6,tCA= C=003E - ESLN =0.i N LU5UR -c8 PT T =1.50 LEGEND

XF 0

3 A

* .1 01 040 010 0.0 1.00 1.00 1.40 &'.s0 1.so .

FIGURE 7. DIVERGENCE RESULTING FROM K*e CONTROL

25



C. STABILIZING THE SYSTEM

Neutral static stability = 0) can be established by

taking e = e. That is, if an error (e) is present in

the system, we take that error as our new e If the

error changes, we change e Equation (15) becomes

K m 4flN (Xm , e ,t) km - f2 (xm ' t)
N e gl e g2  (23)

where the subscript N denotes a neutrally stable system,

and

flN (Xm p e ,t) f, (XpN 't)

xpN = x m  e sgn (x - x p)

Since uKN = K N e

km -fiN (Xm , e , t) km f2 (Xm , t)
UKN gl g2  (24)

At this point we are no longer computing a gain, but

directly synthesizing a control modification using

* Xm , Xm , e and the descriptions of plant and model

dynamics.

Equation (24) gives the control which, when added to

the system control, will cause the plant to follow the

model with constant error. If the error present in the

26
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system should change, the plant will follow the model

with the new error held constant. This is illustrated b,,

way of Example 1. Equation (16) becomes

U KN (b -a) x m + a e sgn (x - x ) 25

XNT AAT) 0,5xX (PI ANT) +-J fP N T

PLNTOU U 1  Lmb +lY 1 AT T=1.O 2.0 LEGEND

'0.00 MWu som g~ 20 sAo t o .10 so .70 go1NrE

FIGURE 8. CONSTANT ERROR CONTROL SIMULATION

27



The simulation was run with xp being disturbed by

step inputs at t = 1.0 and t = 2.0 seconds as shown

in Figure 8.

Note that the error is constant even with e = 0

This does not alter the discussion following Figure 1

regarding steady state zero error, because we are no

longer calculating a gain as shown in Figure 1. The present

form of the system is shown in Figure 9.

/o~ *0 6L )

FIGURE 9. FORM OF THE SYSTEM WITH CONTROL SYNTHESIS

At this point, if

A. The physical pant is perfectly described by the

plant equation, and

B. The plant and the model have the same initial

conditions (e(O) = 0) , and

28
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C. There are no external disturbances (or if the mean

disturbance is zero), then the control defined by equation

(24) will yield zero error (or zero mean error).

D. ERROR AND ERROR RATE CONTROL

If an error exists in the system, it is desired that

it be reduced to zero in a controlled manner. Figure 10

shows a system with initial error. The trajectory of xp
with constant error (equation (24)) is shown, as well as

a desired response to this condition (dashed line).

AL AM,

t

to 

FIGURE 10. CONSTANT ERROR AND DESIRED RESPONSE
TRAJECTORIES OF THE PLANT

The desired response may be obtained by observing that

the plant may be made to follow any model with constant

error. That is, if we can find another model (to be called

29



the control model) which, if followed with constant error,

will cause the plant state to return to the model

trajectory, the desired response is obtained.

The trajectory of the control model is shown in

Figure 11.

xV.

gM.(M

g4 -AA

CIA

t

FIGURE 11. CONTROL MODEL TRAJECTORY

The notations em and ecm represent the errors

between the plant and the model, and between the plant and

the control model, respectively. Note that ecm is held

constant, and that the trajectory of xcm causes em to

diminish.

From Figure 10 the nature of Xcm is seen: If em is

0 , then Xcm is the same as xm (except, perhaps, for

initial conditions). If em is non-zero, then icm

differs from km by an amount proportional to em

30



A control model which achieves the desired response may

be written:

k:c =Xm A (em) sgn (xm  xp) (26)

where A (em) > 0 and

A (em) =0 if

e =0m

The Signum function assures that

ic <km if x > xm and

kcm > kM if xp <x , as required.

From equation (2):

*cm = f2 (Xm t) + g 2 us + A (em) sgn ( xm - x) (27)

so

u cm:k f 2 (Xm , t) A (em) sgn (xm xp)

s1 2

31



The additive control input necessary to follow the

control model with constant error is then (from

equation (24)):

UK : Cm - iN (x cm , e cm t)

(29)

kXcm - f 2 (Xm ,t) -A(em) sgn (X - x)

g2

In equation (29) f 1N (Xcm , em, t) is defined as

the function evaluated at

xp=xcm - e cm sgn (X cm - x )

This expression may be shown to be independent of x cm

by observing the six possible relationships between

X , X m and x cmand writing the expression for e cm

for each:

x > x m x e cm x - x cm e

p m cm ecm xm e cm em

X > X >m X ecm ~X +x cm +e m

Xm >X > x e -x + x
cmp cm in cm m

x c X >X X e cm X X cm e m

32



From which, for all cases

e =x sgyn (xm x )-xm sgn (x~ -X

+ e m sgn (x m - x p) sgn (xcm - x

then

ecm sgn (xc - x J X x - xm + e msgn (x II x )

so x cm - e cm sgn (xcm - x P) x m - e m sgn (x m - xp

The expression for u K is then

u :cm - f N (x , e IIt)
UK

(30)

:km -f2 (X~ ,t) - A(e) San (X -x)

92

where flN (xm , em , t) is the function f, evaluated

at x p = Xm - em sgn ( xm - x )

In equation (30), if 91 92  then uK does not

depend on k cm

In any case, it is simpler at this point to replace

the last term in equation (30) by u s and calculate

*directly up =UK + u 5 ,or

330



cm f IN (Xm em t)
Up gl (31)

The selection of the function A (em) appears to bem

arbitrary with unconstrained control. The plant following

the control model in exactly the desired manner in each

simulation run. The form of A (e ) chosen for most

simulations was A (em) = [exp (w em) i1 , where w

was selected to vary the speed of the response.

The application of this form of error control is

illustrated by continuing Example 1:

p a Xp =up

apb

5cm b xm + us

From equation (26), cm b cm + u + (e) sgn (x x

:k ma (x - e msgn (x - X))
From equation (30), UK = cm m m m p

m b x -A(e) sgn (x -x)cm m m m p
1

34
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The expression for u K simplifies to

UK b xm + (em) sgn (x -X~~

-a (x m - e m sgn (x m - x

selecting a~ (e m~ [exp (3 e m) - 11

The problem was simulated with the values a =+ 0.5

and b =-1.0 as before. The plant, model, and control

model had the same initi-l conditions (zero) . A step

disturbance was imposed on the plant at t =0.5 second.

The response is shown in Figure 12:

§IT (0 llllri -015:X t9PNT) * U (PLANT)

* ~ TA.L X-1.WX (M-E, I 'U (y TEM)

.0 61 IAAC ,T6: (STEP) LEGEND

:1 P 0

e 6-

"TIME

FIGURE 12. SIMULATION USING CONSTANT ERROR
MODEL FOLLOWING CONTROL
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The system at this point is most simply described

from equation (31) as a feedforward control synthesizer with

error feedback, as shown in Figure 13:

FIGURE 13. CONTROL SYSTEM CONFIGURATION WITH
CONSTANT ERROR MODEL FOLLOWING CONTROL
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V. SUMMARY

The method of constant error model following control

is summarized as follows:

Given the plant described by

:p -" f (x P, t) ( g1 Up (1)

and the model

km = f2 (xm ' t) +g 2 Us (2)

Define the control model

Xcm :m + A (em) sgn (xm - x) (26)

Select A (em) such that

A (e m ) > 0

(0) 0

A (eml) > A (em2) if eml > em2

Solve equation (1) for up

U = , f (xp t32)

" 93
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In equation (32) substitute

:k -k
p cm

fl (x , t) = flN (xm em , t)

where

fiN (Xm ' em ' t) fl (xp ,t) with

xP xN e sgn (xm  xp)N mm p

The result

m ~ -fiN (2m ' em t)up 9 (31)

Is the plant input which makes the plant states equal to

those of the model, and restores this condition in the

presence of error.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. It is concluded that constant error model following

control achieves the desired goal of error control for the

systems described in this paper. It offers the advantage

of perceptual simplicity in that the designer can visualize

exactly the effect of his control method on the system

response. It affords flexibility in that the choice of the

restoring function A (em) is arbitrary within the few

constraints mentioned.

B. The following areas of future research are suggested:

1. Development of the theory with application to higher

order systems with non-additive controls.

2. Investigation of the response of systems in which

the physical plant is not accurately described by the plant

equations.

3. Application of the theory to practical problems.
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APPENDIX A: EXAMPLE OF APPLICATION OF THE METHOD TO
A FIRST ORDER NONLINEAR SYST2M WITH
TIME VARYING COEFFICIENTS

1. Assume the Plant is given by

p= txp 2 + 2up (Al)

and the model by

= _ 1/2 (2
jm  (t xm) +U (A2)

define

kcm" = km + A (em) sgn (xm - Xp) (A3)

then

S- tx 2

u p P (A4)Up 2

into (AS) substitute

Sp = ; cm (AS)

Xp =X m em sgn (x - X) (A6)
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then

= - (txm)l/2 + Us + A(e m) sn (xn xp) - t (xm - em sgn (xm  xp)
~2

(A7)

2. The system was simulated using the Continuous System

Modeling Program (CSMP) on the IBM-3033. Time histories

of the response following a disturbance at t = 0.5

second are shown in Figures Al through AS. The system

control input is a unit step at t = 0 in all cases.

Shown also are the plant controls generated in each case.

The four cases were the same except for the choice of

A(em)

A. A(em ) = 5em (Figures Al and A2)

A(em) = exp (em) -1 (Figures A3 and A4)

A(em) = exp (2em ) - I (Figures AS and A6)

A(e m) = exp (3e. m) - 1 (Figures A7 and A8)
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XQT (PLPNT) = -TxXPmm22wUP
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XDOT (P L::NTI =TwXPMT2*2AUP
T M 0 ELI S RTlo4 T +XM1 'U5N fI MODEL 1..=0.0.

uLTA .U~ LEGEND
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FIGURE A2: PLAN'T CONTROL, l(em) = Serem
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HELPL ANTl=_TXPMj? 2-UP

- - ETR (EXP( .03M) M- t 0.0 LEGEND

Xp 0
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XDT(P L)= T T TxM.2+U

EXP 0 M)LEGEND

UU

TI

FIGURE A6: PLANT CONTROL, A(e m exp (2 e ) 

47



~ T4MJ 0 L)=. T X+m2)40

(M U Li SORT i Si0XM3~ .r.E~9~L I..-OD.LEGEND

e IP

6. m

*U 48



DCI (PLQNT) TmXPww2*2UPXI)ITI(M(OOL] -S RT (TwXM) 4*US

PLRN1IC [.C.QO., 0ODEL I. .=O.O.
DLT [5 EXP(3 EM)-1 LEGENo

~up

4 o0do o .to o-,; ac C. o 2.00 a.&* o AD., o ,,. on
TME

FIGURE A8: PLANT CONTROL, A(em) - exp (3 em) - .
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